MLflow로 Model LifeCycle 관리
·
MLOps
1. Why mlflow 이 그림을 엄청 많이 봤다. 이 그림을 통해 보통 하고자 하는 말은 ML 시스템을 운영하기 위해 ML Code 이외에도 다양한 컴포넌트가 많다는 것이다. 하지만, 머신러닝 애플리케이션에서 가장 핵심적인 컴포넌트는 모델이라고 생각한다. 이 핵심적인 "모델"이 어떻게 학습되었고 어떻게 저장되었으며 어떻게 배포되어 있는지 이를 제일 잘할 수 있도록 설계된 툴이 MLflow가 아닐까. 2. What we need mlflow의 설명을 보자, "An open source platform for the machine learning lifecycle". 모델의 모든 생애주기 관리하기 위한 플랫폼으로서 mlflow는 발전하고 있다. 그렇게 된다면 유지관리가 엄청 편해지겠지만 그렇기엔 아직 성..